
Profitability and occupational injuries in U.S. underground coal 
mines☆

Abay Asfawa,*, Christopher Markb, and Regina Pana-Cryana

aCenters for Disease Control and Prevention (CDC), National Institute for Occupational Safety 
and Health (NIOSH), Washington, DC, United States

bCoal Mine Safety and Health-Mine Safety and Health Administration (MSHA), Pittsburgh, PA, 
United States

Abstract

Background—Coal plays a crucial role in the U.S. economy yet underground coal mining 

continues to be one of the most dangerous occupations in the country. In addition, there are large 

variations in both profitability and the incidence of occupational injuries across mines.

Objective—The objective of this study was to examine the association between profitability and 

the incidence rate of occupational injuries in U.S. underground coal mines between 1992 and 

2008.

Data and method—We used mine-specific data on annual hours worked, geographic location, 

and the number of occupational injuries suffered annually from the employment and accident/

injury databases of the Mine Safety and Health Administration, and mine-specific data on annual 

revenue from coal sales, mine age, workforce union status, and mining method from the U.S. 

Energy Information Administration. A total of 5669 mine-year observations (number of mines × 

number of years) were included in our analysis. We used a negative binomial random effects 

model that was appropriate for analyzing panel (combined time-series and cross-sectional) injury 

data that were non-negative and discrete. The dependent variable, occupational injury, was 

measured in three different and non-mutually exclusive ways: all reported fatal and nonfatal 

injuries, reported nonfatal injuries with lost workdays, and the ‘most serious’ (i.e. sum of fatal and 

serious nonfatal) injuries reported. The total number of hours worked in each mine and year 

examined was used as an exposure variable. Profitability, the main explanatory variable, was 

approximated by revenue per hour worked. Our model included mine age, workforce union status, 

mining method, and geographic location as additional control variables.

Results—After controlling for other variables, a 10% increase in real total revenue per hour 

worked was associated with 0.9%, 1.1%, and 1.6% decrease, respectively, in the incidence rates of 

all reported injuries, reported injuries with lost workdays, and the most serious injuries reported.

Conclusion—We found an inverse relationship between profitability and each of the three 

indicators of occupational injuries we used. These results might be partially due to factors that 
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affect both profitability and safety, such as management or engineering practices, and partially due 

to lower investments in safety by less profitable mines, which could imply that some financially 

stressed mines might be so focused on survival that they forgo investing in safety.
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1. Introduction

Coal plays a crucial role in the U.S. economy. In 2009, 1.1 billion tons of mined coal 

produced more than half of all the electricity used in the country and generated more than $4 

billion in export revenue. During the same year, approximately 90,000 workers were 

employed in coal production, more than half of whom worked underground (United Mine 

Workers of America, n.d.; PBS, n.d.; Energy Information Administration (EIA), 2010).

Underground coal mining has been and remains one of the most dangerous occupations in 

the country (Zimmerman, 1981; Bennett and Passmore, 1984; Reardon, 1993; Toscano and 

Windau, 1993; Kowalski-Trakofler et al., 2005; Esterhuizen and Gürtunca, 2006). In recent 

years, the fatal occupational injury rate in underground coal mining has been six times 

higher than that in all private industry (CDC, 2001; Groves et al., 2007; Bureau of Labor 

Statistics (BLS), 2010). Studies have also shown that the costs associated with occupational 

fatal and nonfatal injuries in coal mines have been increasing (BLS, 2007; National Institute 

for Occupational Safety and Health (NIOSH), 2008; Margolis, 2010; Moore et al., 2010).

Several explanations for the high number of injuries occurring in some mines have been 

proposed in the literature, including geological factors such as low seam height (Boden, 

1985; Fotta and Mallett, 1997), room-and-pillar mining method (Pfleider and Krug, 1973; 

Boden, 1985; Pappas et al., 2003), small mine size (The President’s Commission on Coal, 

1980; National Research Council, 1982; Fotta and Mallett, 1997; Grayson, 2001), 

nonunionized workforce (National Research Council, 1982; Appleton and Baker, 1984; 

Morantz, 2011), less experienced and younger miners (Hull et al., 1996; Margolis, 2010), 

inadequate miner training (Dames and Moore, 1977; FlorJancic, 1981; Zimmerman, 1981), 

incomplete understanding of the return on safety investments (Brody et al., 1990), 

inadequate safety regulations (The President’s Commission on Coal, 1980; Mendeloff, 

1980; FlorJancic, 1981; Neumann and Nelson, 1981), and no prior experience with disaster 

(Madsen, 2009). Some of these factors, such as geological conditions, mining method, and 

mine size, might reflect how “easy to mine” a particular mine might be. In addition, 

differences in the level of investment in occupational injury prevention might explain some 

of the variation in the incidence rate and severity of injuries among underground coal mines.

The link between the financial strength of mines and the incidence of occupational injuries 

has been explored through the correlation between productivity and safety in at least two 

major studies by the National Research Council (1982) and Grayson (2001). While these 

studies supported the industry belief that “a productive mine is a safe mine,” their findings 

were not very robust after controlling for other variables. One possible explanation may be 

that productivity, measured in tons of coal produced per hour, is an imperfect measure of a 
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mine’s financial strength. For example, in 2009, the average price of underground coal was 

$32.32/ton in Utah, while it was $78.75/ton in Virginia (EIA, 2010). Therefore, a mine in 

Virginia that is less productive than a mine in Utah might actually be more profitable than 

the mine in Utah.

Financially strong mines can reduce the incidence of occupational injuries by investing more 

in worker safety. For example, they can more easily improve the overall mining system, hire 

experienced workers, and provide comprehensive safety training to their workers than mines 

that are struggling to survive. There is evidence that investments in safety can boost the 

profitability of mines by lowering several categories of employer costs, such as insurance 

and wage premiums, workers’ compensation benefit payments, and frequent production 

disruptions associated with injuries (Brody et al., 1990; Cutler and James, 1996; Yakovlev 

and Sobel, 2010; Moore et al., 2010). Similar results have also been reported in other 

industries such as nuclear power plants (Waddock and Graves, 1997).

If a mine is not financially strong, however, employers might not believe they can afford to 

invest in occupational injury prevention, especially if the injuries targeted by the investment 

have a relatively low expected probability of occurring in the absence of prevention 

(Hopkins, 1999). This means that less profitable mines might not shift scarce financial 

resources from producing coal to investing in occupational injury prevention because the 

short-term benefits might not seem to exceed the costs of prevention. As a result, less 

profitable mines might be less likely to invest as much in safety as more profitable mines 

would.

In this study, we examined whether the profitability of underground coal mines was 

associated with the incidence rate of occupational injuries. We hypothesized that, after 

controlling for mine age, workforce union status, mining method, and geographic region, the 

incidence rates of all reported injures, reported injuries with lost workdays, and the most 

serious injuries reported would be higher in less profitable mines.

2. Methods

When using discrete and non-negative data, such as number of injuries, it is common to use 

count data models, such as Poisson or negative binomial. To determine which model to use, 

we examined the fitness of each distribution to our dependent variables. Fig. 1 presents the 

fitness of the Poisson and the negative binomial models using the number of all injures as an 

example. Details about the data used are provided in Section 3.

The Poisson model often does not fit actual data well due to its assumptions of 

equidispersion and independence of events. In our case, the Poisson model underestimates 

the predicted number of mine-year observations with no injury events. We used the negative 

binomial model because it fit all the dependent variable indicators we used better than the 

regular Poisson model.

While count data models treat injury variables as being independent across time, mine-

specific variables, such as geological conditions and management practices, are more likely 

to be serially correlated. Therefore, we used a count data model for panels – that include 

Asfaw et al. Page 3

Accid Anal Prev. Author manuscript; available in PMC 2015 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cross-sectional and time-series data – with N number of mines and T number of years. In 

addition to controlling for observable individual mine heterogeneity, such as individual 

mine-specific characteristics that may include size, age, and mining method, analyzing panel 

data enables us to control for unobservable heterogeneity among individual mines (see for 

instance, Hsiao, 2003; Baltagi, 2009).

We assumed that each injury variable indicator (yit) takes a value of 0, 1, 2, 3, …, varies 

among mines i (i = 1, …, N) and over time t (t = 1, …, T), and has a negative binomial 

distribution that allows its variance to be greater than its mean. Following Hausman et al. 

(1984), the random effect overdispersion can be specified as:

(1)

where

(2)

and xit is a matrix of explanatory variables, β is a matrix of coefficients to be estimated, Γ is 

the gamma function, and δi is the dispersion parameter. The mean and variance of yit are 

given by:

(3)

and

(4)

Eqs. (3) and (4) indicate that the mean to the variance ratio is 1/(1 + δi), which can vary 

across mines but is constant through time. If δ is zero, Eq. (1) collapses to a Poisson model 

since E(yit) = var(yit) = λit. The maximum likelihood function can be formulated and the β 

coefficients can be estimated, based on Eq. (1) (see Hausman et al., 1984; Liang and Zeger, 

1986; Cameron and Trivedi, 1998; Greene, 2007 for the maximum likelihood function).

The exponential function in Eq. (2) ensures that the number of injuries always takes a non-

negative value. The way the equation is presented implicitly assumes that workers in each 

mine have an equal risk of injury or exposure to risk and also that the number of injuries 

suffered per year in each mine would depend on the number of workers employed and 

exposed during that year. For instance, keeping all other variables constant, the expected 

number of injuries in large mines where 500 or more workers are exposed to 1 million or 

more hours of mining activity per year (calculated by multiplying 500 workers by 2000 h 

worked by each worker per year) would be higher than the number of injuries in very small 

mines where 50 or less workers are exposed to 100,000 or less hours of mining activity per 

year. In order to control for potential differences in exposure across mines of different sizes, 

we considered incidence rates of injuries (rather than total number of injuries) by including 
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an exposure variable in Eq. (2). Differences in exposure duration can be incorporated in Eq. 

(2) by multiplying both of its sides by ξit:

(5)

(6)

where ξit is the exposure duration at mine i at time t.

Eq. (6) shows that the effect of exposure duration can be included in the model in 

logarithmic form. This means that the regression coefficient of exposure duration would be 

constrained to a value of 1 which enables us to express injury incidence rates as a function 

of other explanatory variables.

3. Data and measurement of variables

Two primary data sources were used in this study. The first includes the employment and 

accident/injury databases of the Mine Safety and Health Administration (MSHA) for the 

period 1992 through 2008 (see www.msha.gov/stats/statinfo.htm). NIOSH has converted 

some of these data into SPSS and dBase IV file formats (see www.cdc.gov/niosh/mining/

data/). The MSHA employment data file contains basic information for each coal mine such 

as type (e.g. surface or underground), total number of hours worked per year, total tons of 

coal produced per year, and geographic location. The MSHA accident/injury data file 

contains detailed information on injuries, such as the date and type of injury, and the 

characteristics of injured workers. For this study we constructed three different injury 

indicators: the number of all fatal and nonfatal injuries, the number of all nonfatal injuries 

with lost workdays, and the number of the “most serious” injuries that included fatal and 

serious nonfatal injuries.

The number of all injuries and the number of injuries with lost workdays were measured 

using the respective injury type (injtype) variable from the MSHA accident/injury file. The 

number of the ‘most serious’ injuries, according to our definition, was derived from the 

accident code (acccode) variable from the MSHA accident/injury file. We combined 

MSHA’s acccode = 1 (‘fatal’) and acccode = 2 (‘serious’) to create our ‘most serious’ 

injuries variable. According to MSHA, an injury is coded as ‘serious’ (acccode = 2) if it has 

reasonable potential to cause death – see www.msha.gov/forms/7000-1.pdf. Note that all 

injuries were ‘reported’ injuries, and the three injury indicators were not mutually exclusive.

We merged the MSHA employment and accident/injury files using the ‘mineid’ variable that 

is included in each file. Mine-years that were reported in the employment file but were not 

found in the accident/injury file were considered to include no injuries (see also Poplin et al., 

2006). To construct a consistent data set, we only included information on underground coal 

mines which produced at least 20,000 tons of coal per year. Very small mines that produced 

less than 20,000 tons per year accounted for less than 1% of the total hours worked in our 

data set and were considered unrepresentative of the industry as a whole.

Asfaw et al. Page 5

Accid Anal Prev. Author manuscript; available in PMC 2015 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.msha.gov/stats/statinfo.htm
http://www.cdc.gov/niosh/mining/data/
http://www.cdc.gov/niosh/mining/data/
http://www.msha.gov/forms/7000-1.pdf


Our second primary data source was EIA, which collects information on coal prices and 

other mine-level data from the mining industry. Through an Information Access Agreement 

between EIA and NIOSH, we were provided with mine-specific annual data on total 

revenue, mine age, workforce union status, and mining method. We merged the EIA data 

with MSHA data using the ‘mineid’ variable that was included in both.

Our study required a measure of mine profitability as the main explanatory variable. 

Conventionally, profit is measured by the difference between total revenue and total costs. 

EIA data include the total revenue obtained from coal sales for each mine but do not include 

information on other factor prices, such as non-labor operating costs (e.g. for roof support 

and ventilation), capital investments, depreciation, and depletion, which would be necessary 

to compute the full cost of coal production. However, underground coal mining is relatively 

labor intensive, and labor typically accounts for one-third to one-half of total production 

costs (Bibb and Hargrove, 1992). Therefore, we approximated profitability in a surrogate 

variable calculated as total revenue per hour worked.1 We used the Consumer Price Index 

for all items (www.gpoaccess.gov/eop/2010/B62.xls) to convert current dollars to constant 

(1977 = 100) dollars and adjust the profitability variable for inflation.

In summary, in this study, we used merged mine-level annual data from MSHA and EIA to 

construct a data set that included: the three indicators of injury described above as dependent 

(or outcome) variables, hours worked per year as an exposure variable, total annual revenue 

per hour worked as the main explanatory variable, and mine age, workforce union status, 

mining method, and geographic location as control variables.

4. Results

4.1. Descriptive statistics

Table 1 provides summary descriptive statistics for all the variables used in the analyses. For 

the 17 years in the period 1992–2008, our panel data set included 1407 mines resulting in 

5669 records, each representing one underground mine-year with complete information.

We used data on 87,080 (317 fatal and 86,763 nonfatal) injuries, 58,791 nonfatal injuries 

with lost workdays, 3423 ‘most serious’ injuries (including the 317 fatalities), and 1.45 

billion h worked. Dividing the number of injuries by the total hours worked and assuming 

that 2000 h worked were equivalent to one full-time equivalent (FTE) worker, results in 

incidence rates of 12.81, 8.84, and 0.67 per 100 FTE workers, respectively, for each 

indicator of injury we used. Fig. 2 shows the histograms of the injury variables per 100 FTE 

workers. Throughout the rest of the paper, injury rates are expressed as number of injuries 

per 100 FTE workers.

Fig. 3 presents the trend of these incidence rates and the real revenue per hour worked for 

the period 1992–2008. An overall downward trend can be observed in all three of our injury 

1Data on mining wages are available from BLS but we chose to use hours worked rather than labor cost per ton mined because BLS 
data show that mining wages do not vary substantially around the country. For example, in 2002, wages in the lowest-wage state (KY) 
were 90% of the national average, while they were 113% of the national average in the highest-wage state (PA). BLS data can be 
accessed at http://data.bls.gov/cgibin/srgate.
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indicators; between 1992 and 2008, the incidence rates of all injuries, injuries with lost 

workdays, and the most serious injuries declined by 3.21%, 3.57%, and 4.96% annually, 

respectively. During the same time period, the average profitability of mines (real revenue 

per hour worked) grew by 2.55% annually. Nearly all of the increase in profitability 

occurred during the last 6 years of the time period studied.

The average age of mines in our data set was 8.26 years. Interestingly, the share of 

unionized mines declined significantly from 1992, when 86% of the mines were unionized, 

to 2008, when only 13% were unionized. Longwall mines were represented in only 15.86% 

of the mine-years. Most of the mine-years in our data set were from smaller mines located in 

the Central region (65.71%), followed by the Northern region (15.73%).

5. Results of the negative binomial random effects model

Tables 2–4 present the results of the negative binomial random effects model for each 

dependent variable. Note again that the exposure variable was the number of hours worked 

in each mine during each year. The z-statistics tested the null hypothesis that the IRR = 1, 

i.e. that there was no relationship between the main explanatory or each control variable and 

the incidence rate of injuries. We also reported the 95% confidence intervals of the 

estimated IRR. The χ2 likelihood ratio test indicated that for all the injury indicators we 

examined, panel estimators were statistically significantly different from pooled (average) 

estimators (p < 0.001). The coefficients of ln_r and ln_s also indicated evidence of 

overdispersion. As is appropriate for negative binomial random effects models, we estimated 

McFadden’s (1974) pseudo R2 values using log likelihood values. Still, as indicated by 

Blomquist (1980), pseudo R2 values should be considered as rough goodness of fit 

indicators. The pseudo R2 values for all injuries, injuries with lost workdays, and the most 

serious injuries were 0.56, 0.68, and 0.21, respectively.

To facilitate interpretation, all estimates are presented as incidence rate ratios (IRR) rather 

than beta coefficients. IRR are the factors by which dependent variables (the three different 

injury indicators) should be multiplied for every unit increase in the explanatory variables 

and are defined as the exponential of the beta coefficients. An IRR of less than one indicates 

that an increase in the value of the explanatory variable resulted in a reduction in the 

incidence rate of injuries, while an IRR greater than one indicates that increasing the value 

of the explanatory variable increased the incidence rate of injuries.

The results presented in Table 2 indicated that a one unit increase in the log profitability was 

associated with a 9% decrease in the incidence rate of all injuries, while holding all the other 

(control) variables constant (p < 0.001, IRR = 0.91, 95% CI: 0.89, 0.94). The effect was 

even stronger for the other two injury indicators we used. As shown in Table 3, controlling 

for all other variables, a one unit increase in the log profitability was associated with an 11% 

decrease in the incidence rate of injuries with lost workdays (p < 0.001, IRR = 0.89, 95% 

CI: 0.86, 0.91). In the case of the most serious injuries (Table 4), the IRR of the log 

profitability was 0.84 (p = 0.001, 95% CI: 0.76, 0.93). This implies that a one unit increase 

in the log profitability was associated with a 16% decrease in the incidence rate of the most 

serious injuries, holding all else constant.
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Keeping all other variables included in the model constant, a 1 year increase in mine age 

was associated with a reduction in the incidence rates of all injuries, injuries with lost 

workdays, and the most serious injuries by factors of 0.97, 0.96, and 0.95, respectively (p < 

0.001). Also as expected, mining method was strongly associated with the incidence of 

injury; the coefficient of the mining method variable indicated that, compared to room-and-

pillar mines, longwall mines experienced a lower incidence rate of all injuries, injuries with 

lost workdays, and the most serious injuries by factors of 0.87, 0.91, and 0.51, respectively, 

keeping all other variables constant.

6. Discussion

The results of the negative binomial random effects model supported our hypothesis that 

profitability, our main explanatory variable, and the incidence rate of injuries were inversely 

related in U.S. underground coal mines. As shown in Tables 2–4, the coefficient of the 

profitability variable (logarithm of the real total revenue per hour worked) took the 

hypothesized negative sign (IRR < 1) and was statistically significant across all three injury 

indicators. A 10% increase in profitability (for example, from the mean of $43 to $47) 

would be associated with 0.9%, 0.11%, and 1.6% decrease, respectively, in the incidence 

rates of all injuries, injuries with lost workdays, and the most serious injuries.

Several other covariates that might affect the incidence of injury in underground coal mines 

such as mine age (data are available since 1983), workforce union status, mining method 

(longwall vs. room-and-pillar), and geographic region, were included in the regression 

analysis as control variables. As was previously mentioned, these variables might at least 

partially capture the overall ease of mining in a particular mine. Mine size was not directly 

included in the analysis because its two traditional measures, hours worked and tons 

produced, were already included in the exposure and profitability variables. In addition, both 

mining method and mine age, both of which were used as control variables, are highly 

correlated with mine size. The longwall method is more capital intensive than room-and-

pillar mining, and longwall mines tend to be the largest underground mines. For example, in 

2009, 40 longwall mines produced as much coal as the other 500 room-and-pillar mines 

combined (EIA, 2010). Larger room-and-pillar mines that require substantial capital 

investments, such as those that require shafts or slopes to access the coal seam, also tend to 

be longer-lived than the small drift mines that are most typical of the Central coalfields (see 

Fig. 4). Because of the positive correlation of mining method and capital investment, we 

believe that the cost of capital also was captured by the control variables included in the 

model.

To provide a visual association between profitability and the incidence rates of injuries, we 

plotted the predicted incidence rates of injuries against the actual and predicted profitability 

values, fixing the random effects at zero. To facilitate the presentation, predicted values 

were plotted by profitability deciles of mines. Results are presented in Fig. 5; panels a, b, 

and c depict the association between profitability and the predicted and actual incidence 

rates of all injuries, injuries with lost workdays, and the most serious injuries, respectively, 

keeping all other variables constant.
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The graphs indicate that the predicted incidence rate of all injuries in mines in the lowest 

profit deciles (where the average real revenue per hour worked was $15) was 14.3 compared 

to only 11.4 in mines in the highest profit deciles (where the average real revenue per hour 

worked was $89). This means that the predicted incidence rate of all injuries in mines in the 

least profitable deciles was 26% higher than in mines in the most profitable deciles. 

Similarly, mines in the least profitable deciles had a 34% higher incidence rate of injuries 

with lost workdays compared to mines in the most profitable deciles. The association 

between profitability and the incidence rates of the most serious injuries was consistent with 

our previous results and much stronger. The predicted incidence rate of the most serious 

injuries in mines in the least profitable deciles was 0.94 compared to only 0.60 in mines in 

the most profitable deciles. This implies that the average predicted incidence rate of the most 

serious injuries in the least profitable mines was 60% higher than the average predicted 

incidence rate of the most serious injuries in the most profitable mines.

We also analyzed several models in which we replaced profitability with productivity, 

defined as the logarithm of tons produced per hour. Results were consistent with but less 

robust than those from the profitability analysis for all three injury indicators. In the most 

extreme case, where the outcome variable was the most serious injuries, the p value for the 

profitability variable was 0.001, compared to only 0.233 for the productivity variable.

Most of the control variables we used to estimate the negative binomial random effects 

model took the expected sign and were statistically significant. For example, both mine age 

and longwall mining method were negatively and significantly associated with each of the 

three injury indicators we used. As previously mentioned, both a higher mine age and a 

longwall mining method are associated with larger, more capital intensive mines. Therefore, 

larger mines tend to have higher labor productivity (which reduces worker exposure to 

hazards) and to employ a higher percentage of their workforce in support operations rather 

than in more hazardous production operations at the coal face (National Research Council, 

1982).

One important feature of the MSHA injury data used in our study is that they are self-

reported by the mines. Past studies have found evidence that some mines may significantly 

under-report injuries, and in particular, that injury reporting practices may differ between 

union and non-union mines (Appleton and Baker, 1984; Hirsch et al., 1997; Azaroff et al., 

2002; Morse et al., 2003; Morantz, 2011). In our study, the unionization variable was indeed 

positively associated with the incidence rates of all reported injuries and reported injuries 

with lost workdays. This finding is consistent with the respective finding by Morantz (2011) 

and could be in part due to a reporting effect, because unionized workers may be less fearful 

of repercussions if they report relatively minor injuries. However, we could find no 

empirical evidence that injury reporting behavior is systematically different between 

profitable and less profitable mines. If less profitable mines are indeed less likely to report 

injuries, our results could underestimate the impact of profitability on the rates of 

occupational injuries.

The positive association of our unionization variable with the incidence rates of all injuries 

and injuries with lost workdays may also be due to the fact that in our the data set, most of 
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the injuries in union mines occurred during the early years of the study period, when the 

overall injury rates in both union and non-union mines were higher. Despite this bias in the 

data, our analysis indicated that unionization was negatively associated with the incidence 

rate of the most serious injuries, though the relationship was not statistically significant at 

the 10% level.

In addition to estimating the random effects model, we estimated a fixed effects model and 

derived roughly similar results. We presented only the results of the random effects model 

for the following three reasons. First, the fixed effects model assumes that the covariance is 

zero between time variant variables and variables that do not change much over time, such 

as geographic region. This means that the coefficients of the variables that do not change 

much over time cannot be estimated. Second, the fixed effects model does not consider 

cases with no variation in the dependent variable over time, which results in the analysis 

including only mines that reported experiencing injuries. This problem is larger in the case 

of relatively rare injuries such as serious injuries (see also Madsen, 2009). Third, the 

dispersion of injuries might vary across mines because of unobserved mine-specific factors 

which would not be accounted for by the fixed effects model.

In addition to potential data and method limitations mentioned above, in our study we could 

not establish a causal relationship between profitability and the incidence of injuries because 

of the potential endogeneity of the profitability variable. A profitable mine might be more 

likely to invest in safety, but it may also be that both safety and profitability are correlated 

with other, less tangible, factors. These might include the quality of mine management, the 

suitability of the mining equipment to the particular conditions in the mine, or the caliber of 

the mine planning and engineering. Future research could include a more detailed 

examination of the characteristics of the least profitable mines with high incidence of 

occupational injuries, in order to better understand how to guide specific strategies for 

prevention. The industry could be involved in identifying ways to improve safety indicators 

at mines with weaker economic performance. Future research could also explore the 

relationship between safety and financial health at surface mines and non-coal underground 

mines.

In summary, our study provided empirical evidence of the association between profitability 

and occupational injury incidence rates in the U.S. underground coal mines. The study joins 

a growing body of research in a variety of industries (see for instance Lake (2002) and 

Joskow (2006) for the relationship between economic performance and safety indicators in 

nuclear power plants). Policy can be informed by the findings that the least profitable mines 

experience the highest incidence rates of all injuries, injuries with lost workdays, and the 

most serious injuries. Mine operators of financially stressed mines also need to be aware of 

the association between profitability and occupational injuries, which could imply that they 

cannot afford to forgo investing in worker safety while struggling to improve mine 

profitability.
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Fig. 1. 
Comparison of the negative binomial and Poisson models: all reported injuries in the 5669 

mine-year records used.
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Fig. 2. 
Histograms of incidence rates of all reported injuries, reported injuries with lost workdays, 

and the most serious injuries reported per 100 FTE workers in the 5669 mine-year records 

used.
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Fig. 3. 
Average trend of incidence rates of injuries and real total revenue per hour ($).
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Fig. 4. 
Relationship between mine age and size (annual hours worked) in the 5669 mine-year 

records used.
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Fig. 5. 
Predicted impact of profitability on the incidence rate of (a) all reported injuries, (b) injuries 

with lost workdays, and (c) the most serious injuries.
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Table 1

Descriptive statistics for variables in the 5669a mine-year records used.

Variable Value

Total number of all reported fatal and nonfatal injuries 87,080

Total number of reported nonfatal injuries with lost workdays 58,791

Total number of the most serious injuries reported, including fatalities 3423

Total number of hours worked 1.45 billion

Average incidence of all reported injuries per 100 FTE 12.81

Average incidence of reported injuries with lost workdays per 100 FTE 8.84

Average incidence of the most serious injuries reported per 100 FTE 0.67

Average real revenue per hours worked (indicator of profitability) $43

Average mine age in years (tracked since 1983b) 8.26

Unionized (%) 45.84

Longwall mining method (%) 15.86

Regionc (%)

North 15.73

Central 65.71

Midwest 9.74

West 6.44

South 2.38

a
Data were unbalanced. Information was available for only 25 mines (2.5%) for the entire 17-year-long period from 1992 to 2008.

b
Publically available MSHA data.

c
Data were assigned to one of five regions: North (PA, OH, MD, and northern WV), Central (southern WV, VA, TN, and eastern KY), Southern 

(AL), Midwest (western KY, IL, and IN), and West (all mines west of the Mississippi).
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